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Analysis of Interchannel Crosstalk in a
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Abstract—A technique for computing the effect of cross-phase
modulation (XPM) on two copropagating analog channels in an
optical fiber link is presented. In this approach, the interaction
between the two channels is linearized by keeping the self-phase
modulation (SPM) and XPM interactions in the strong optical
carrier components only at lowest order and then at the next
order, deriving the effect on the modulation components of both
channels when the optical carrier is strong relative to the other
components of the channel. In contrast to some previously sug-
gested approaches, it is not assumed that the pump is undistorted,
and therefore, this method accurately describes distortions due to
SPM, XPM, and dispersion management in both channels. This
method is easily applied to systems with multiple spans employing
dispersion management with loss and gain. The expressions for
the received radio frequency power and crosstalk between the two
channels when direct detection is used are then provided. Using
this approach, new expressions for the amplitude modulation and
phase modulation modes of the two channels are derived, and the
way they exchange energy when SPM, XPM, and dispersion are all
considered is explained. This method yields excellent agreement
between theory and experimental data.

Index Terms—Analog transmission, cross-phase modulation
(XPM), crosstalk, intensity modulation, phase modulation (PM),
self-phase modulation (SPM), wavelength-division multiplexing.

I. INTRODUCTION

IN the transmission of analog signals over optical fibers,
cross-phase modulation (XPM) between channels in a

wavelength-division-multiplexed (WDM) system can be highly
detrimental in the presence of dispersion. The effect of XPM is
to transfer the intensity modulation in one channel, which we
call the “pump” channel, to phase modulation (PM) in another,
which we call the “probe” channel. The fiber’s group-velocity
dispersion then converts this PM into intensity modulation,
distorting the probe channel. The resulting transfer of intensity
modulation from the pump to the probe is measured by the
crosstalk, which is defined as the ratio in decibels of the
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received radio frequency (RF) power in the probe channel to the
received RF power in the pump channel at a given modulation
frequency [1]–[4]. In contrast to digital transmission systems,
waveform distortion in analog systems must be kept to a min-
imum to maintain high fidelity. A good model must therefore
accurately characterize all the important sources of distortion.

Because crosstalk in an analog link arises because of the Kerr
nonlinearity, it is reasonable to mitigate it by using dispersion
management, which has been used successfully in digital links
to reduce the nonlinear interaction between channels. In a
dispersion-managed system, a large local dispersion is used to
achieve a large group-velocity difference between the channels,
thereby averaging the nonlinear phase rotation in the probe over
many periods of the amplitude modulation (AM) in the pump.
At the receiver, the fiber dispersion is compensated so that the
signal incurs little dispersive distortion.

Several investigators have considered the problem of analyti-
cally calculating crosstalk in analog fiber links limited by XPM
[1], [5], [6]. In some cases, closed-form expressions for the
crosstalk have been presented [1], [5]. However, previous work
did not include the effect of pump channel distortion during
transmission, which we have found is necessary to accurately
compute the crosstalk for large modulation frequencies and
for the dispersion-managed experiments we are modeling. One
may compute the crosstalk for any system by resorting to
computationally costly numerical integration of the nonlinear
Schrödinger equation. However, in this paper, we linearize
the system by assuming that the modulation depth and the
ratio of the modulation frequency to the channel spacing are
small, yielding a linear system of ordinary differential equations
(ODEs). After solving this system of ODEs, we compute the
crosstalk. This linearization quantitatively captures all of the
characteristics of the XPM-induced crosstalk, even in compli-
cated systems with dispersion management and periodic gain
and loss. The equations reveal the underlying physics and are
computationally nearly as rapid to evaluate as earlier closed-
form expressions. We validate our results by comparison to full
numerical simulations and experiments.

II. ANALYSIS

We begin our analysis with the nonlinear Schrödinger equa-
tion with z-varying dispersion, loss, and gain, which is ex-
pressed as

∂Q

∂z
=

j

2
β(z)

∂2Q

∂t2
+ jγ|Q|2Q − 1

2
Γ(z)Q (1)
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where Q is the electric field envelope normalized so that
|Q|2 has the units of power, β(z) is the z-dependent disper-
sion, γ is the fiber’s nonlinear coefficient, and Γ(z) is the z-
dependent loss/gain. This equation may be usefully rewritten as
a nonlinear Schrödinger equation with z-varying dispersive and
nonlinear coefficients by making the transformation

q(z, t) = Q(z, t) exp


1

2

z∫
0

Γ(z′)dz′


 (2)

which yields

∂q

∂z
=

j

2
β(z)

∂2q

∂t2
+ jF (z)|q|2q (3)

where

F (z) = γ exp


−

z∫
0

Γ(z′)dz′


 . (4)

Equation (3) does not include the Raman effect or polarization
effects; the Raman effect has a significant effect on crosstalk be-
low a modulation frequency of 2 GHz [1]. The goal of this paper
is to describe effects that occur at larger modulation frequen-
cies, where the Kerr effect and its interaction with dispersion
dominates the crosstalk.

We will begin by focusing on the case where the signal
consists of two well-separated wavelength channels. By well
separated, we mean that the crosstalk from the demultiplexing
filters is negligible, so that all of the observable crosstalk
comes from the nonlinear interaction during the propagation. In
this case, we may write q(z, t) = u(z, t) + v(z, t) exp(j∆ωt),
where ∆ω is the frequency spacing of the channels. Because
the u and v channels are well separated, we can separately
describe the evolution of each of the wavelength channels with
the coupled equations [7]

∂u

∂z
=

j

2
β(z)

∂2u

∂t2
+ jF (z)

(|u|2 + 2|v|2)u (5a)

∂v

∂z
=

j

2
β(z)

(
∂2v

∂t2
+ 2j∆ω

∂v

∂t
− ∆ω2v

)

+ jF (z)
(
2|u|2 + |v|2) v. (5b)

We obtain these equations by substituting the expression for
q = u + v exp(j∆ωt) into (3) and setting the factors multiply-
ing exp(jn∆ωt) when n = 0 or 1 to zero.

We are interested in the transmission of only a small number
of RF tones. Therefore, a Fourier decomposition of the electric
fields in these tones is natural. We make this decomposition by
letting

u(z, t) =
∞∑

k=−∞
ũk(z) exp(jkΩt) (6a)

v(z, t) =
∞∑

k=−∞
ṽk(z) exp {jkΩ [t − ∆ωg(z)]} (6b)

where g(z) =
∫ z

0 β(z′)dz′. The Fourier decomposition for v
contains the dispersion-dependent group velocity relative to
that of the u channel. The Fourier decomposition yields a set
of coupled ODEs, which are expressed as

dũk

dz
= − j

2
Ω2k2β(z)ũk + jF (z)

×
∞∑

p=−∞

∞∑
n=−∞

{ũk−p+nũ∗
n + 2ṽk−p+nṽ∗n

× exp [−j(k − p)Ω∆ωg(z)]} ũp

(7a)

dṽk

dz
= − j

2
(Ω2k2 + ∆ω2)β(z)ṽk + jF (z)

×
∞∑

p=−∞

∞∑
n=−∞

{2ũk−p+nũ∗
n exp [j(k − p)Ω∆ωg(z)]

+ ṽk−p+nṽ∗n} ṽp. (7b)

A. Channels’ Fourier Evolution

In the transmission of either AM or PM of a single RF tone,
there are three tones in the optical field in each channel that
are important: a strong tone corresponding to the optical carrier
and two weak sidebands corresponding to the modulation. We
therefore introduce a perturbation expansion of each channel
[8], which is defined as{

ũk

ṽk

}
=

{
u0,k

v0,k

}
+ m

{
u1,k

v1,k

}
+ O(m2) (8)

where m is the modulation depth, which we assume to be small.
In our theory, the modulation depth m is assumed to be small
enough that the power in the optical modulation tones is
small compared to the power in the optical carrier (direct
current) tones. We have found in full simulations that when m
is less than about 0.1–0.2, it is small enough so that the theory
works well. This value is consistent with what is generally
the case in regular perturbation expansions [8]. The range of
values over which we have verified this limit is necessarily
small because full simulations are computationally expensive.
Our goal is to linearize the interaction between the two channels
about the optical carriers and to derive the correction to the field
due to the small modulation. Therefore, we assume that ũ0 and
ṽ0 are of order 1, ũ±1 and ṽ±1 are of order m, and all other
Fourier components of the channels are of order m2 or higher.

To leading order, we must solve for the interaction between
the optical carrier tones (k = 0) of the two channels. This
leading-order problem is equivalent to assuming that there
is no modulation in either channel. The resulting differential
equations are given as follows:

du0,0

dz
= jF (z)

(|u0,0|2 + 2|v0,0|2
)
u0,0 (9a)

dv0,0

dz
= − j

2
∆ω2β(z)v0,0

+ jF (z)
(
2|u0,0|2 + |v0,0|2

)
v0,0. (9b)
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These equations yield the exact solutions

u0,0(z)=u0,0(0) exp [j(P1+2P2)h(z)] (10a)

v0,0(z)= v0,0(0) exp
[
− j

2
∆ω2g(z)+j(2P1+P2)h(z)

]
(10b)

where h(z) =
∫ z

0 F (z′)dz′, P1 = |u0,0(0)|2, and P2 =
|v0,0(0)|2. Without loss of generality, we assume that the initial
values u0,0(0) and v0,0(0) are real so that they simply equal√

P1 and
√

P2, respectively.
At the next order in the perturbation expansion, O(m),

we obtain four coupled differential equations for u1,±1 and
v1,±1. Whereas simple substitution yields unwieldy differential
equations, the change of variables

y1(z) =u1,1(z) exp[ jφ1(z) ] (11a)

y2(z) =u∗
1,−1(z) exp[ jφ2(z) ] (11b)

y3(z) = v1,1(z) exp[ jφ3(z) ] (11c)

y4(z) = v∗1,−1(z) exp[ jφ4(z) ] (11d)

simplifies the equations significantly when we choose

φ1(z) = −(P1 + 2P2)h(z) +
Ω∆ω

2
g(z) (12a)

φ2(z) = (P1 + 2P2)h(z) +
Ω∆ω

2
g(z) (12b)

φ3(z) = −(2P1 + P2)h(z) +
1
2
(∆ω2 − Ω∆ω)g(z) (12c)

φ4(z) = (2P1 + P2)h(z) − 1
2
(∆ω2 + Ω∆ω)g(z). (12d)

With this change of variables, we now obtain the system of
differential equations

dy
dz

= j

[
1
2
β(z)ΩM + F (z)N

]
y(z) (13)

where y(z) = (y1, y2, y3, y4)T , and M and N are constant 4×4
matrices, which are given as

M =




−Ω + ∆ω 0 0 0
0 Ω + ∆ω 0 0
0 0 −Ω − ∆ω 0
0 0 0 Ω − ∆ω




(14)

and

N =




P1 P1 2
√

P1P2 2
√

P1P2

−P1 −P1 −2
√

P1P2 −2
√

P1P2

2
√

P1P2 2
√

P1P2 P2 P2

−2
√

P1P2 −2
√

P1P2 −P2 −P2


 .

(15)

Equation (13) is a homogeneous linear system of ODEs with
variable coefficients. Obtaining a general solution explicitly
can only be done for special cases, but one can numerically
integrate the system for any given dispersion map and gain/loss

profile. Because these equations are fourth-order ODEs, the
numerical evaluation is computationally rapid—far more rapid
than the evaluation of the evolution of the original partial
differential (1)—and can thus be used in parametric studies
of the system. Additionally, the two terms in (13) separate
the effects of dispersion and power variation in the variable
coefficients β(z) and F (z).

B. Computing Crosstalk—Direct Detection

Once the vector y(z) is obtained at some distance by inte-
grating (13), we use it to compute the crosstalk [1]–[4]. The two
channels are typically transmitted in a pump–probe arrange-
ment so that the pump channel is modulated, whereas the probe
channel is of continuous wave (CW) initially. Therefore, the
crosstalk is defined as [1]

Crosstalk(Ω) = 10 log10

[
RF power of probe channel(Ω)
RF power of pump channel(Ω)

]
.

(16)

The RF power given by an RF spectrum analyzer is computed
by the square-magnitude of the complex Fourier component of
the received photocurrent. Therefore, if we use direct detection
with an ideal square-law photodiode, the RF power is related to
the optical field on the photodetector as

RF power(Ω) = R

∣∣∣∣∣∣
K

T

T∫
0

|u(z, t)|2 eiΩtdt

∣∣∣∣∣∣
2

(17)

where R is the load resistance of the RF spectrum analyzer, K
is the responsivity of the photodetector, and T = 2π/Ω is the
period of the RF oscillation. A similar expression is used for the
v channel, and the crosstalk expression can then be evaluated.

We can determine the RF power of each channel by substi-
tuting (6a) and (6b) into (17). For the u channel, the RF power
is expressed as

RF power of u(Ω) = RK2
[(|ũ−1|2 + |ũ1|2

) |ũ0|2
+ ũ2

0ũ
∗
1ũ

∗
−1 + ũ∗2

0 ũ1ũ−1

]
(18)

where we have neglected contributions that are O(m3) and
higher. A similar expression holds for the v channel. By sub-
stituting our expressions for ũk and ṽk, (10a)–(11d), into (18),
we obtain the expressions

RF power of u(Ω) =RK2m2P1 |y1(z) + y2(z)|2 (19a)

RF power of v(Ω) =RK2m2P2 |y3(z) + y4(z)|2 . (19b)

From these two expressions, one can compute the crosstalk,
assuming that the u channel is the probe channel and the v
channel is the pump channel, by using

Crosstalk(Ω) = 10 log10

[
P1 |y1(z) + y2(z)|2
P2 |y3(z) + y4(z)|2

]
. (20)

This expression for the crosstalk is a leading-order expression,
and higher order corrections in m can be derived by computing
higher order corrections to the expressions for RF power.
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C. AM and PM Mode Evolution

Because direct detection is only capable of measuring
AM, (19a) and (19b) suggest that the modes responsible for
AM in the u and v channels are the sums y1(z) + y2(z)
and y3(z) + y4(z), respectively. Indeed, if we write u(z, t) =
A(z, t) exp[iΦ(z, t)] and v(z, t) = B(z, t) exp[iΘ(z, t)], where
A(z, t), B(z, t), Φ(z, t), and Θ(z, t) are real functions, we find
that the perturbation expansion gives to order m

A(z, t) =
√

P1

[
1 + m

W1(z)√
P1

× cos
(

Ωt − Ω∆ω

2
g(z) + ψ1(z)

)]
(21a)

Φ(z, t) =φ0(z) + m
W2(z)√

P1

× sin
(

Ωt − Ω∆ω

2
g(z) + ψ2(z)

)
(21b)

B(z, t) =
√

P2

[
1 + m

W3(z)√
P2

× cos
(

Ωt +
Ω∆ω

2
g(z) + ψ3(z)

)]
(21c)

Θ(z, t) = θ0(z) + m
W4(z)√

P2

× sin
(

Ωt +
Ω∆ω

2
g(z) + ψ4(z)

)
(21d)

where Wk(z) and ψk(z) are defined as

W1(z) exp [ jψ1(z) ] = y1(z) + y2(z) (22a)

W2(z) exp [ jψ2(z) ] = y1(z) − y2(z) (22b)

W3(z) exp [ jψ3(z) ] = y3(z) + y4(z) (22c)

W4(z) exp [ jψ4(z) ] = y3(z) − y4(z) (22d)

φ0(z) = (P1 + 2P2)h(z), and θ0(z) = −∆ω2g(z)/2 +
(2P1 + P2)h(z).

Note that W1(z) and W3(z) give the magnitudes of the
AM of u and v, respectively, and W2(z) and W4(z) give the
magnitudes of the PM of u and v, respectively. One can also
obtain the evolution of the RF-phase offsets between these AM
and PM modes by comparing the phases in (21a)–(21d).

Because our interest is understanding the evolution of the
AM and PM modes of the optical signal, it is useful to change
variables so that

Au(z) = y1(z) + y2(z) (23a)

Pu(z) = y1(z) − y2(z) (23b)

Av(z) = y3(z) + y4(z) (23c)

Pv(z) = y3(z) − y4(z). (23d)

Performing this change of variables leads to the new system for
w(z) = (Au, Pu, Av, Pv)T , which is defined as

dw
dz

= j

[
1
2
β(z)ΩM + 2F (z)N

]
w(z) (24)

where

M =




∆ω −Ω 0 0
−Ω ∆ω 0 0
0 0 −∆ω −Ω
0 0 −Ω −∆ω


 (25)

and

N =




0 0 0 0
P1 0 2

√
P1P2 0

0 0 0 0
2
√

P1P2 0 P2 0


 . (26)

The preceding formulas show that the PM mode of a channel
is “pumped” by the AM and PM modes of the channel itself as
well as the AM mode of the other channel. The AM mode of
a channel is only “pumped” by the AM and PM modes of the
same channel through the fiber’s dispersion. The combination
of these two pumping mechanisms shows, first, the transfer of
AM in one channel to PM in another, and, second, the transfer
of PM in a channel to AM in the same channel via dispersion.

Finally, if direct detection is used and if we assume that the u
and v channels are the probe and pump channels, respectively,
the expression for crosstalk is then given as follows:

Crosstalk(Ω) = 10 log10

[
P1 |Au(z)|2
P2 |Av(z)|2

]

= 10 log10

[
P1W

2
1 (z)

P2W 2
3 (z)

]
. (27)

We note that when direct detection is used, it is possible to
obtain either zero crosstalk when the AM mode of the probe
channel vanishes or infinite crosstalk when the AM mode of the
pump channel vanishes. This concept of “infinite crosstalk” is
perhaps counterintuitive. Simply stated, it means that the pump
channel modulation is entirely contained within the optical
phase so that a direct detection receiver will not observe it,
whereas simultaneously, the probe channel has incurred some
AM due to the XPM and dispersion. The definition of crosstalk
in (16) therefore yields infinite results. The pump’s modulation
can be entirely shifted into the optical phase via dispersion
alone. Because the AM and PM modes of both channels interact
as given by (24), it is important to emphasize that despite the
vanishing of one of the AM modes, the modulation indeed
persists as a PM mode. Thus, in using direct detection, one loses
information about the RF modulation. As the RF transmission is
zero in the pump channel at frequencies with infinite crosstalk,
a practical system would not be designed to operate at these
frequencies.
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Fig. 1. Comparison between theory and experimental measurement of
crosstalk for a link with constant dispersion. The pump channel wavelength
was 1549.3 nm, whereas the probe channels were spaced (a) 162 GHz and
(b) 995 GHz away from the pump. The thick solid curves show the results
from the theory, whereas the thin solid curves show experimental data. The dot-
dashed curves show the results of the theory when pump distortion is neglected.

III. RESULTS

To determine the validity of the ODE model that we use
to compute the crosstalk, we have compared the results of
our model with both the simulations of the full nonlinear
Schrödinger equation and the experimental results. In Figs. 1
and 2, we show the results of integrating (24), first, for
a system with constant dispersion and, then, for a system
with dispersion-compensating fiber at the end of the transmis-
sion fiber.

Fig. 1 shows the crosstalk as a function of the modulation
frequency after propagation through 25 km of Lucent All-
Wave fiber with D = 17 ps/nm-km for two different channel
spacings. The fiber’s nonlinear coefficient γ is specified to be
1.1 W−1km−1 at 1550 nm, and the loss is 0.2 dB/km. The pump
channel wavelength is 1549.3 nm, and the spacing between
the pump and the probe channels was taken to be 162 GHz
in Fig. 1(a) and 995 GHz in Fig. 1(b). The initial average
channel power is 5 mW per channel. The thick curves indicate
the results of our ODE model, whereas the thin curves show
experimental data. For comparison, we also plot the simulation
results when pump distortion is neglected using dot-dashed
curves. The dispersion nulls shown at about 13 GHz for the
pump channel and 18 GHz for the probe channel are quanti-
tatively captured by our ODE model because both dispersive
and nonlinear distortions are included in the derivation of (24)
and (27). However, these nulls do not appear when the pump
distortion is neglected. In addition, our ODE model does not
agree with the experimental data below 2 GHz because we
have neglected the Raman effect in this paper. In our model,

Fig. 2. Comparison between theory and experimental measurement of
crosstalk for a link with dispersion-compensating fiber at the end. The
dispersion-compensating fiber was cut to lengths corresponding to (a) 0%,
(b) 50%, and (c) 100% of the link’s accumulated dispersion. The thick solid
curves show the results from the theory, whereas the thin solid curves show
experimental data. The dot-dashed curve in (a) shows the result of the theory
when pump distortion is neglected.

we use a scalar nonlinear Schrödinger equation to model the
propagation through the fiber. This equation implies that the
pump and probe channels are in a single constant polarization
state throughout propagation. If they remain copolarized, the
two channels experience larger XPM than if they were cross
polarized. In the experiments, the pump and probe channels
were not copolarized at the input to the fiber, and, in addi-
tion, the polarization-mode dispersion in the fiber causes the
two channels’ polarization states to walk off relative to their
respective input states. The reason for the walkoff is that the
total propagation distance is equal to only a few fiber correlation
lengths, and as such, there is not complete randomization of the
polarization states of the two channels relative to one another.
This walkoff leads to an effective reduction of the nonlinear
coefficient of the fiber, which gives a single parameter for
fitting our model to the experimental data. In Fig. 1, the fiber’s
nonlinear coefficient was reduced to 51% of its specified value
of 1.1 W−1km−1 in the case of the smaller channel spacing,
whereas it was reduced to 77% of the specified value for the
larger channel spacing.

In Fig. 2, we plot the crosstalk as a function of the modulation
frequency for a dispersion-compensated system, in which we
compare our ODE simulation (thick curves) and the experi-
mental measurements of the crosstalk (thin curves) in [9]. The
system used in this experiment consists of 8.1 km of Lucent
UltraWave fiber followed by dispersion compensation equalling
0%, 50%, and 100% of the dispersion accumulated in the
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UltraWave fiber, and the results are plotted in Fig. 2(a)–(c),
respectively. The specifications of the UltraWave fiber are D =
20 ps/nm-km, a nonlinear coefficient γ of 0.88 W−1km−1 at
1550 nm, and a loss of Γ = 0.2 dB/km. In the simulation,
we used the value D = 15.7 ps/nm-km for the dispersion of
the 8.1-km fiber and D = −75 ps/nm-km for the dispersion-
compensating fiber, whose length was 0 m, 850 m, and
1.7 km for the cases of 0%, 50%, and 100% dispersion com-
pensation, respectively. We set the nonlinear coefficient γ of
the dispersion-compensating fiber equal to 3.1 W−1km−1. In
the experimental results of Fig. 2, care was taken to ensure
that the input polarization states of the two channels were the
same. In Fig. 2(a), we used 70% of the specified nonlinear
coefficient of the UltraWave transmission fiber to produce the
results from the simulation. In Fig. 2(b) and (c), we used
exactly the specified nonlinear coefficient of the two fibers.
For comparison with the result from the uncompensated link,
we have plotted the XPM-induced crosstalk predicted when
pump distortion is neglected (dot-dashed curve), which deviates
from both the ODE simulation results and the experimental data
above 13 GHz. Note that the result of (27) agrees well with both
full simulations and the experimental results over the range of
modulation frequency above about 2 GHz, demonstrating the
importance of taking into account the pump distortion. We note
that previous models of analog transmission did not take into
account pump distortion and hence do not yield accurate results
for the parameter regime of interest in this paper [1], [5].

IV. CONCLUSION

In this paper, we have derived a method for determining
the XPM-induced crosstalk in an analog fiber link by solving
a small system of ODEs. We have shown that a simple re-
lationship exists between the modulation Fourier tones of the
optical signal and the modes that lead to the AM and PM of
the optical signal. In particular, the optical fiber converts AM
to PM, and this interplay between the two can lead to nulls in
the received RF power when direct detection is used. Our ODE
model accurately captures these nulls in excellent agreement
with the experiment. By contrast, when pump distortion is
neglected as was the case in previous models, the results deviate
significantly from both complete simulations and experiments,
indicating that pump distortion has a significant impact on the
crosstalk.
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